Wilson quotients for composite moduli
نویسندگان
چکیده
An analogue for composite moduli m ≥ 2 of the Wilson quotient is studied. Various congruences are derived, and the question of when these quotients are divisible by m is investigated; such an m will be called a “Wilson number”. It is shown that numbers in certain infinite classes cannot be Wilson numbers. Eight new Wilson numbers up to 500 million were found.
منابع مشابه
Quotients by non-reductive algebraic group actions
Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...
متن کاملThe Moduli Space of Stable Quotients
A moduli space of stable quotients of the rank n trivial sheaf on stable curves is introduced. Over nonsingular curves, the moduli space is Grothendieck’s Quot scheme. Over nodal curves, a relative construction is made to keep the torsion of the quotient away from the singularities. New compactifications of classical spaces arise naturally: a nonsingular and irreducible compactification of the ...
متن کاملSymplectic implosion and non-reductive quotients
There is a close relationship between Mumford’s geometric invariant theory (GIT) in (complex) algebraic geometry and the process of reduction in symplectic geometry. GIT was developed to construct quotients of algebraic varieties by reductive group actions and thus to construct and study moduli spaces [28, 29]. When a moduli space (or a compactification of a moduli space) over C can be construc...
متن کاملComments on M Theory Dynamics on G 2 Holonomy Manifolds
We study the dynamics of M-theory on G2 holonomy manifolds, and consider in detail the manifolds realized as the quotient of the spin bundle over S by discrete groups. We analyse, in particular, the class of quotients where the triality symmetry is broken. We study the structure of the moduli space, construct its defining equations and show that three different types of classical geometries are...
متن کاملMirror Symmetry for Stable Quotients Invariants
The moduli space of stable quotients introduced by Marian-Oprea-Pandharipande provides a natural compactification of the space of morphisms from nonsingular curves to a nonsingular projective variety and carries a natural virtual class. We show that the analogue of Givental’s J-function for the resulting twisted projective invariants is described by the same mirror hypergeometric series as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 67 شماره
صفحات -
تاریخ انتشار 1998